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ABSTRACT

Let the binary operations v- and n denote the arithmetic operations

of addition (a..jb = a + b) and reciprocal addition (anb = ab/(a + b)) ,

that is, %-/ and r,' are the series and parallel combination rules for resistor

networks. It is easy to verify that the identity

(1) (a¼Jb'Jc) r-'((areb) ,_j(ar-c) '.'(br-c)) = (ar~br\c) '.j((awjb) -(aw.,c) n(b'.jc))

holds. Furthermore if the binary operation o denotes arithmetic multiplication then

the identity

(2) (a\.jb) * (arb) = a. b

holds. Now suppose only that '.' and r\ are associative commutative binary

operations on an abstract set S and that there exists a commutative group R,

such that S is a subset of R and (2) holds on S. If in an abstract network

theory ý-J and r" are the series and parallel combination rules and if wye-delta

transformations are valid in this theory then it is shown that (I) must hold.

Wye-delta transformations are valid for resistor networks but need not exist

in resistor-inductor-capacitor (RLC) networks. Thus, in the presence of (2),

identity (1) is a necessary but not sufficient condition for wye-delta transformation.
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1. Introduction

Let the binary operations ,-J and --% denote the arithmetic operations

of addition (aWb = a + b) and reciprocal addition (ar-%b = ab/(a + b)) ,

that is '-' and r(- are the series and parallel combination rules for resistor

networks. It is easy to verify that the identity

(1) (aJb 'c) r((a:-•b) •,(ar-•c) '.J(ar-c)) = (at-cbrNc) .j((aujb) r"(a,.-'c) rn(bý-.'c))

holds. Furthermore if the binary operation , denotes arithmetic multiplication

then the identity

(2) (a'.Jb) • (ar--b) = a • b

holds. Now suppose only that ,j and r-N are associative commutative binary

operations on an abstract set and that there exists a commutative group R, •

such that S is a subset of R and (2) holds on S. If in an abstract network

theory (defined later) •j and r-ý are the series and parallel combination rules

and if wye-delta transformations are valid in this theory then it will be shown

that (I) must hold. Wye-delta transformations are valid for resistor networks

but need not exist in resistor-inductor-capacitor (RLC) networks. Thus, in
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the presence of (2), identity (I) is a necessary but not sufficient condition

for wye-delta transformation.

As a second example, let ,.j and n be given arithmetically by

aý.jb = ab and a(-b = a + b - ab . These are the series and parallel rules

for combining the connection probabilities of independent randomly-operating

switches. Identity (2) holds where • is arithmetic addition but (1) fails

for all a, b, c where 0 < a, b, c < 1 . Consequently wye-delta transformation

is not valid for these probabilistic networks. Nevertheless certain approximate

transformations can be of use. The details are given in [ 5] .

Similar results obtain for the operations aý'b = a + b - ab and

arb = ab/(a + b - ab) , where • is multiplication, and for a',jb = min(a + b, I)

and arab = max(a + b - 1, 0) , where * is addition. The first pair of operations

are the series (cascade) and parallel (diversity reception [I] ) rules for combining

the noise powers of one-watt communication channels with incoherent additive

noise. The second pair of operations occurs in multivalued logics [ 2, 7] . In

particular the values 0, 1 and 1/2 correspond to the short, cut and neutral

configurations of the Shannon switching game [4]. Both pairs of operations

extend to bridge-type networks. In consequence of the failure of (I), wye-

delta transformation is not valid for these networks.

The preceeding examples illustrate the use of identity (1) in determining

the possibility of wye-delta transformation given only series and parallel

combination rules. The only known examples having network interpretation

and satisfying both (1) and (2) are algebraically similar to resistor



#383 -3-

networks in that the operation distributes over both ý.. and r' . Thus

the identity (2) seems of limited applicability. Nevertheless, its derivation

is of value in demonstrating the use of abstract algebra in network theory.

The terms "network theory" and "wye-delta transformation" are

commonly associated with linear electrical devices. They will now be defined

in an abstract fashion.
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2. Definition of an abstract network theory

Let S be a fixed abstract set containing at least two elements.

"G will denote any finite connected linear graph. It is also assumed that

"G is undirected and contains at least two vertices. The vertices of G

will be indexed by 1, ... , m and the branches by 1, ... , n . This indexing

need not be consecutive. For each branch i let aI be a member of S.

aI will be called the branch value. A graph G together with its branch

values a1, ... , a constitute a network.

nnFor each network G, a,, ... , a n and each pair of branch indices

i andj where 1_-i < j < m, let ViG(al, .. , an) be a member of S.

ViG (a1 , ... , a ) is called the driving-point value between i and j . Theij n

driving-point values are also subject to the following three requirements.

(3) The driving-point values are to be the same for isomorphic

networks, that is, they are to be independent of the

particular indexing of the vertices and branches.

(4) The deletion of any branch which connects only one

vertex (a loop) does not change, any of the driving-point

values.

(5) If a branch I connects vertices j and k and if the

removal of that branch leaves the graph disconnected, then

V Gk(al .... , an) = ai must hold.
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The set S, all graphs G, and the functions ViG constitute a network

theory.

In the case of resistor networks, S is the set of positive numbers,

a1 is the branch resistance of the Ith branch, and V is the driving-point

resistance measured between terminals i and j. The presence of a branch

connected to only one terminal does not affect any driving-point resistance

(postulate 4). If the resistor i is the only connection between distinct

terminals j and k then the driving-point resistance equals the branch

resistance (postulate 5). The customary transfer resistances can be obtained

from the driving-point resistances [ 3]. If, instead, S is the set of complex

numbers with positive real part and if the term "impedance" is used in place

of "resistance", then these statements also apply to resistor-inductor-

capacitor networks.

A network theory is said to be reciprocal if there exist binary operations

•.-, r, and • which satisfy the following four requirements.

(6) -j and r-% are associative commutative binary operations

defined on S ( r": S S).

(7) Suppose that a network contains two branches in series

whose branch values are a and b. If this series

combination is replaced by a single branch of value

aý.ab then the resulting driving-point values are the

same as the corresponding values in the original

network. (The number of vertices, however, is

decreased by one. )
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(8) Suppose that a network contains two branches in

parallel whose branch values are a and b . If

this parallel combination is replaced by a single

branch of value at-b then the resulting driving-

point values are the same as the corresponding

values in the original network. (The number

of vertices remains the same. )

(9) There exists a commutative group R,. such that

S is a subset of R and

(a-k'.b). (anb) = a * b holds for all members

a and b of S.

The operations '.' and r: are called the series and parallel

combination rules of the network theory. They can be obtained, uniquely, as

the driving-point values of two-branch series and parallel networks. This

equivalence of series and parallel combinations with a single branch is a

well-known property of resistor networks.

Only the existence of the reciprocity operation • is required. Yet

this existence may be difficult to determine. Separated from its network

terminology, the unsolved problem is this:

Given a set S, closed under two associative, commutative

operations v.' and n-, when does there exist a commutative

group R,. such that S is contained in R and (a\.jb). (ar:b)=

a. b holds for all a and b in S ?
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In the case of resistor and resistor-inductor-capacitor networks, postulate (9)

is satisfiedbythe multiplicative group of non-zero complex numbers. Forthese or any

other reciprocal networks the reciprocity operation • cannot be unique. To demonstrate,

let c be any fixed member of R other than the identity and define the operation G

reciprocity operation - cannot be unique. To demonstrate, let c be any

fixed member of R other than the identity and define the operation ®
by a(b =a-b. c . Then R,® is also a commutative group and the

identity (a%.,b) () (ar-b) = a (D b holds. There are other possibilities.

If, as in the theory of switching networks, the identity aJ-'a = a holds

then S, ), r, is a distributive lattice. Suppose it is also the lattice of a

commutative lattice-ordered group. Then this group operation is a suitable

reciprocity operation. Any distributive lattice can be realized as a lattice

of sets and the symmetric difference operation (set addition modulo 2) is

a reciprocity operation. For the previous operation R equals S while

for this last operation it is considerably larger.

Customarily the term "recprocity " refers to the invariance of

transmission under the interchange of source and sink. Here it is used

in a weaker sense: Consider the network G of Figuzt 1 and the networks

G# and G* which are obtained from G by coalescing vertices I and 2

and I and 3 respectively. Then, using postulates (3) through (9)

G G # G*GV (a, b) V 13(a, b) = (amib) • (a r-b) = a b =V 12 (a, b) V 13 (a, b)

and hence

(10) V G/V G VG3/VG#
12 12 131
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holds. The division bar indicates multiplication (') by the group inverse.

Stated more generally, the ratio (in R, • ) of the driving-point value between

I and 2 and the driving-point value between 1 and 2 with 1 and 3

"short-circuited" is the same as the corresponding ratio obtained by

interchanging terminals 2 and 3. From the assumptions already made,

principally (6) and (9), this reciprocity relation holds for series-parallel

networks, that is where the driving-point values can be expressed as poly-

nomials in %j and rt. For example, considering the graphs G, G# and

G of Figure 2 ,

VlVG = /a =

g r-(f'.,(ete-(d'(c•(b'.ja)))))/g (f•j(e (d (c b)))) =V 1 3

In the case of linear electrical networks the customary type of reciprocity is

given by the equation Z12 = Z 1. It is not needed* for the weaker relation

Z 11Y 11 Z22Y22 which is the type of reciprocity expressed by (10).

Since linear electrical networks consisting of two-terminal components
are automatically reciprocal [ 8], this distinction becomes clear only when multi-
terminal elements are considered. Networks of these elements are generally
unsuitable for wye-delta transformation. An exception is the unistor (or gyristor)
[ 6]. While unistor networks are non-reciprocal (in the usual electrical sense)
and admit wye-delta transformations, they do not have a commutative series
operation and hence identity (1) is not relevant.
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The previous network definitions could have been expressed more

formally by changing the graphical terminology to that of relations or of

incidence matrices. Or the definitions could have been made more abstract

by the use of matroids [ 9] instead of graphs. Either approach would obscure

the geometric character of the wye-delta transformation.
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3. Definition of wye-delta transformation

A wye is a graph or subgraph consisting of three branches which

connect each of three vertices to a common fourth vertex. This fourth

vertex is not otherwise connected. A delta is a graph or subgraph

consisting of three branches which connect each of three vertices so

as to form a circuit. Wye and delta networks are illustrated in Figure 3.

Assume that a fixed correspondence is established between the

three vertices of the wye, not including the common vertex, and those

of the delta. A network theory admits valid wye-delta transformations

if the following two properties hold.

(11i) For each set a, b, c of wye branch values there exists

at least one corresponding set a', b', c' , of delta branch

values. Moreover, each possible set of delta branch

values corresponds to at least one set of wye branch

values.

(12) Suppose that a network contains a wye whose branch values

are a, b, c. If this wye is replaced by a delta whose branch

values are a', b', c' then the resulting driving-point values

are the same as the corresponding values in the original

network. This replacement must preserve the correspondence

fecThe validity of wye-to-delta transformations requires a set at, bt , c'

for each a, b, c. The validity of delta-to-wye transformations requires a set
a, b, c for each a', b', c' . Thus the validity of both transformations yields
a correspondence of equivalence classes of wye values a, b, c and delta
values a', b', c' which is one-to-one and onto.
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between the vertices of the wye and delta. Furthermore,

the equivalence of the driving-point values of the two

networks must be preserved when any two corresponding

vertices of each network (not including the common wye

vertex) are coalesced. These results must hold for each

set a', b', c' which corresponds to a, b, c.

As a consequence of (12), the driving-point values between vertices

2 and 3 of the wye and delta networks of Figure 3 must be the same. By (7)

and (8) this results in the equation b'-'c' = a-(bbJc). Similarly, coalescing

vertices 2 and 3 of each graph yields the networks of Figure 4 and equating

the driving-point values between vertices 1 and Z yields the equation

a" I.j (bI'nc') =b r-c . Thus by symmetry,

(13) aw.b = c'-(a'jb') a'rb' =c'(-(a'jb')

wajc = b'rN(a'vc') a'rnc' = b'r(a'%jc')

býjc = a'rn(b".'jc') b'rnc' = a'r-(b'.c')

all hold.

The series and parallel postulates (6), (7) and (8) are limiting

cases of the wye-delta postulates (11) and (12). The series postulate

results when one of the wye branches is deleted. The parallel postulate

results when one of the delta branches is replaced by a short-circuit. For

resistor networks, the wye-delta transformation correspondence is given by
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at=(ab+ac+bc)a, b' =(ab+ac+bc)/b and c' =-(ab+ac+bc)/c.

Letting a become infinite yields the series operation a' = b + c and letting

a' approach zero yields the parallel operation a = b'c'/(b' + c').

Wye-delta transformation fails for resistor-inductor-capacitor networks

only in that the transformed values a', b', c' (and a, b, c) may have negative

(or zero) real-part. For example, if a = I + 21 and b = c = 1- 21 then

a' = - (1 + 181)/5 . This failing is of electrical importance in that such

transformations require the use of active (energy-producing) components.

Any extension of S into the negative half of the complex plane yields a

non-zero complex number z such that z, -z and 2z are members of S.

Using the notation of (10) and the network G of Figure 5, V 2 = 4 z

V G •-z and VGN = VIG# = 0. This contradicts the cancellation property
13 312 13

of (10) and hence no reciprocity operation * can exist. Furthermore, in the

wye network do, exactly two of the three driving-point values between

vertices 1, 2 and 3 are zero. This behavior requires infinite energy and

violates Kirchoff's laws.

Now consider the network GI of Figure 6. By (7) and (8), that

is, contracting series and parallel subgraphs, the driving-point value between

vertices I and 6 is found to be a'jb'((a%.jc)r (b'jc)) . An application of

the wye-delta transformation of Figure 3 eliminates vertex 4 and yields the

network G2 . A second application eliminates vertex 5 and yields the

network G. By (12) the driving-point value bet veen vertices I and 6
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of G 3 is the same as that for G I " This value can also be found from G 3

by means of (10), the reciprocity relation:

First, replace the parallel combination in G3 . This yields the

network G4 of Figure 7. Next, application of the wye-delta transformation

of Figure 8 , where d, e, f are delta values corresponding to wye values

a', c', a'ltb', yields the network G5 . Finally, application of the parallel

operation yields G6 . By (6) and (9),

fr((bf'rc) _J(c' re))/e(f)cIe) =

(f ý.j(c n e)) • (b n d) %_,;(c Ire) /f v((b I nd) v (c I ne)) • (c I ne)=

blnde-,(f%,j(cl,%e))/(b'• dnclr e)

fn((b'nd)...(c'r-e)) and b'rdr-n(fv.(c'ne)) are respectively the driving-

point values between vertices I and 6 and I and 3 of G6 o The same

values derivedfrom G and G3 are ajb,((a-.cVc)n(b.-c)) and

b'n(c'•J(a'nb''(a'vJc'))). Similarly, fnc'le and b'ndnc'ne are

the corresponding driving-point values where vertices I and 3 or I and 6

are coalesced. In G3 they equal, respectively, c'n(a'.J(c'na'-b')) and

b'nc'n((a'nb') v(alnc')) . The result is the equation

(14) a.Jb'J ((a•Jc) •(bc))/c' (a j (c'a'bl)) =

hb •(cl •(a'•b'• (a'•jc')))/b'•c' •((a'•b') •(a'•cl)).
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By several applications of identity (2), equation (14) can be

transformed into

a'•b'•(a'•c') •(b'jc')/(a'•--b') .

The symbols a, b, c can be eliminated from (15) by use of the first column

of equations in (13). Application of (2) then yields the symmetric equation

(16) a', b"' c'/(a'r-b') v(a'nc') v(b'rnc') =

a'rnb'rc'rn(a'%jb') r-%(aI•c') r(b'vct) - (a'vblvc').

Similarly, using (13) to eliminate a', b', c' from (15) results in the dual

equation

(17) a. b" c/ (ab)( =

a~bvcvJ(anb) v(ar~c) (bnc) • (anbnc).

Since the primed values a', b', c' and the unprimed values a, b, c have the

same range, equation (16) implies

(18) a b. c/(anb) %a(anc) v(bc) =

anb,"cr(a•Jb) ,"•%(a•ac) n(bkJc) •(a•jbvc).
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Eliminating a - b - c between equations (17) and (18) yields

-- (bc (a'-~bnc). (a~.ab) n-(a% )'- (bv~c)=

and by identity (2) it follows that

(1) (a'.-'bý.c) n((anb) %j (arc) k-..4bric)) =(an'brnc) %J((a'ý..b) n~anc) e-'(b..c)).
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4. Discussion

The previous section concluded with the proof of the following result.

Suppose that the value set S and the series and parallel operations

Q and r-% are associated with a reciprocal network theory which admits valid

wye-delta transformations. Then the balance condition

(1) (a-j b .Qc) r((anb) .'(arnc) v (bnc)) = (a br-%nc) Q.((aJb) r-%(a Q c)(b Q c))

holds for all members a, b, c of S.

The identity (1) is equivalent to the assertion that the driving-point

values between vertices I and 2 of the two networks of Figure 9 are both

equal. These two networks can be obtained from the network of Figure 10 by

coalescing vertices 3 and 4 or 5 and 6 respectively. Thus the driving-

point value bet ween vertices 1 and 2 of the network of Figure 10 is the same

if either vertices 3 and 4 or vertices 5 and 6 are "short-circuited". For

this reason, (1) is called a balance condition. *

Many network theories which fail to satisfy the balance condition,

fail to satisfy it In the special case where a = b = c. This case is easily

verified. When any of the values a, b, c (or a', b', c') correspond to an

In the case of resistor 3ietworks, if a potential is applied between
vertices I and 2 of the network of Figure 10 then vertices 3 and 4 have
equal potential if and only if a 2 a bc. This same condition holds for
vertices 5 and 6. Thusv for either vertex-pair, the customary "balanced
bridge" occurs only if a 2 = bc .

I
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open or short-circuit then the wye-delta transformation is merely series-

parallel replacement. Hence for such values a, b, c the balance condition

is of no constraint.

A pair of associative commutative operations can satisfy the balance

condition and not be associated with any reciprocal network theory. For

example, let the operations %.j and e-ý be given by ajb = a + b and

ar•b = ab or by a,.'b = anb = a + b. Using the first pair of operations,

(10) fails for the network G of Figure 5 when all four branch values are

changed to I. Using the second pair of operations, (10) fails for the

network G of Figure 5 whenever all three branch values are made unequal.

Moreover, it is not possible to satisfy all six equations in (13)

Hence any network theory having either pair of operations as its series

and parallel combination rules can neither be reciprocal nor admit valid

wye-delta transformations.

Another example is that of minimal cost networks. S is the set of

non-negative numbers and ,a and e are given by a,-b = a + b and

ar-b = min (a, b) . This network theory satisfies the balance condition

but cannot be reciprocal as it violates the cancellation property: aý..b = a

if and only if anb = b. It does admit valid wye-delta transformations.

However, the correspondence between the wye values a, b, c and the

delta values a', b', c' is one-to-one only for positive numbers a, b, c.

By duality, similar statements hold for capacity networks.
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The reciprocity operation • was used extensively in the proof of

the balance condition and there is no indication that postulate (9) is

unnecessary. Hence it is conjectured that there exists a network theory

which admits valid wye-delta transformations, satisfies postulates (6),

(7) and (8), but fails to satisfy either (9) or the balance condition.

Few of the known reciprocal network theories satisfy the balance condition.

Any example whose series and parallel operations are essentially different

from those of resistor networks would be of interest.

3I

t

I
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